Location of Roots for Recursively Defined Sequences

Ethan Fricker and Maggie Mikus

July 26, 2013

Abstract
Consider the recursively defined sequences

\[F_n(x) = g(x)F_{n-1}(x) + h(x)F_{n-2}(x) \]

with initial conditions \(F_0 \) and \(F_1 \). In this article, we introduce a new way to bound the roots of \(F_n(x) \) and show how this new method can be used with respect to the Fibonacci-type polynomials. Furthermore, we compare this root bounding method with previously used methods involving Geršchgorin’s Circle Theorem.

1 Introduction

Consider a Fibonacci type polynomial sequence defined by

\[G_n(x) = x^kG_{n-1}(x) + G_{n-2}(x), \quad n \geq 2 \]

with given initial conditions \(G_0(x) \) and \(G_1(x) \). When \(G_0(x) = 1, G_1(x) = x \) and \(k = 1 \), one gets the Fibonacci polynomial sequence. For \(G_0(x) = 2, G_1(x) = x \) and \(k = 1 \) one gets the Lucas polynomial sequence. Hogatt and Bicknell [HB], give explicit forms for the roots of the Fibonacci and Lucas polynomials; however, finding explicit forms for the roots of other polynomials sequences has been a challenge. Despite this, Moore [Moo] and Prodinger [Pro] studied the asymptotic behavior of the maximal roots of \(G_n(x) \) with \(G_0(x) = -1, G_1(x) = x - 1 \) and \(k = 1 \). Then Yu, Wang and He [YWH] generalized Moore’s result for \(G_0(x) = a, \)
\(G_1(x) = x + a \) and \(k = 1 \) when \(a \) is a negative integer. Additionally, Molina and Zeleke found similar results for \(k \geq 2 \) in [MZ1] and [MZ2].

Regarding the boundedness of the roots for \(G_n(x) \): Ricci [Ric], Mátyás [Mát], and Wang and He [WH] examined boundedness of the roots for \(G_n(x) \). With \(G_0(x) = a, G_1(x) = x + b \), Wang and He [WH] proved the roots are bounded by \(1 + \max \{|a|, |b|\} \) which generalized the results of Ricci [Ric] and Mátyás [Mát].

In this article we develop a new method to show the boundedness of the roots for a more general recursions. We then show how our method compares with the method used by Wang and He [WH] involving Gerschgorin’s Circle Theorem, and finally, we introduce a sufficient condition for a recursion to have bounded roots.

2 Bounding Roots of Recursive Functions

Consider a function, \(F(x) \), that can be represented by the determinant of an \(n \times n \) matrix, \(A_n \). Denote the entry in the \(i \)th row, and \(j \)th column of \(A_n \) by \(f_{ij}(x) \) where \(f_{ij}(x) \) is defined for all \(x \). Then we have the following theorem:

Theorem 2.1. Each zero of \(F(x) \) satisfies at least one of the \(n \) inequalities given by:

\[
|f_{ii}(x)| \leq \sum_{1 \leq j \leq n, j \neq i} |f_{ij}(x)|, \quad i = 1, 2, ..., n.
\]

Proof. We will prove this by contradiction. Assume the opposite, that some root, \(r \), of \(F(x) \) satisfies:

\[
|f_{ii}(r)| > \sum_{1 \leq j \leq n, j \neq i} |f_{ij}(r)|, \quad i = 1, 2, ..., n.
\]

However if this is the case, then \(A_n \) by definition is a strictly diagonally dominant matrix. Since \(|A_n| = F(r) = 0 \), a contradiction occurs because all strictly diagonally dominant matrices are non-singular [HJ, Theorem 6.1.10].

\[\square\]

Additionally, since the determinant of a square matrix is equal to the determinant of its transpose we have the following corollary:
Corollary 2.2. Each zero of $F(x)$ also satisfies at least one of the n equalities given by:

$$|f_{jj}(x)| \leq \sum_{1 \leq i \leq n \atop i \neq j} |f_{ij}(x)|, \quad j = 1, 2, \ldots, n.$$

2.1 Comparison with the Circle Theorem

As shown in [WH], one can use Geršchgorin’s Circle Theorem to bound the eigenvalues of a scalar, square matrix and therefore bound the roots of the associated characteristic polynomial. In their paper, they find bounds for the zeros of a Fibonacci-type polynomial which exactly agrees with the predictions of Theorem 2.1. However, using Geršchgorin’s Circle theorem involves unnecessary steps and also has limitations, especially when the problem of finding a corresponding scalar matrix is difficult. Consider the following example:

$$G_n(x) = x^2G_{n-1}(x) + G_{n-2}(x); \quad G_0(x) = 1, \ G_1(x) = x.$$

It is easily checked by induction that

$$G_n(x) = |B| = \begin{vmatrix} x & -1 & \cdot & \cdot & \cdot \\ 1 & x^2 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & x^2 & \cdot & \cdot & -1 \end{vmatrix}.$$

If one proceeds with the aim to use Geršchgorin’s Circle Theorem, they will soon run into difficulties since $G_n(x)$ is the characteristic polynomial of C if

$$G_n(x) = |B| = \det(\lambda I - C).$$

This is problematic because no substitution for λ will make C a scalar matrix, and the theorem cannot be applied. However given $G_n(x) = |B|$, one can directly use Theorem 2.1 to obtain that the zeros of $G_n(x)$ satisfy at least one of the following inequalities:

$$|x| \leq 1; \ |x^2| \leq 2; \ |x^3| \leq 1.$$

Therefore all the roots satisfy

$$|x| \leq \sqrt{2}.$$
3 General Recursions

For a general reccurance given by

\[F_n(x) = g(x)F_{n-1}(x) + h(x)F_{n-2}(x), \]

with initial conditions \(F_0(x) \) and \(F_1(x) \), we can show by induction that \(F_n(x) \) is
the determinant of the \(n \times n \) matrix

\[
\begin{vmatrix}
F_1(x) & -F_0(x) \\
h(x) & g(x) & -1 \\
& h(x) & g(x) & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & -1 \\
& & & & & h(x) & g(x)
\end{vmatrix}
\]

Using this determinant representation of \(F_n(x) \) and Theorem 2.1 we can see that
all the roots of \(F_n(x) \) satisfy at least one of the following inequalities.

\[|F_1(x)| \leq |F_0(x)| \quad |g(x)| \leq |h(x)| + 1 \]

Furthermore, we can use these inequalities to obtain a sufficient condition for
boundedness of the roots for \(F_n(x) \).

Theorem 3.1. Let \(F_n(x) \) be a recursion with initial conditions \(F_0(x) \) and \(F_1(x) \),
and for all \(n \geq 2 \)

\[F_n(x) = g(x)F_{n-1}(x) + h(x)F_{n-2}. \]

Then if the values of \(x \) that satisfy either \(|F_1(x)| \leq |F_0(x)| \) or \(|g(x)| \leq |h(x)| + 1 \)
are bounded in a region in the complex plane, then the roots of \(F_n(x) \) are bounded
and are located in that region.

4 Acknowledgements

We would like to thank Michigan State University and Lyman Briggs College for
hosting our REU. Additionally, we express our gratitude for the help and support
we received from our advisor, Dr. Aklilu Zeleke, and his graduate assistants,
Justin Droba, Rani Satyam, and Richard Shadrach.

Project sponsored by the National Security Agency under Grant Number H98230-13-1-0259 and by the National Science Foundation under Grant Number DMS 1062817.
References

